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SUMMARY 
This paper describes a BiotSavart discrete vortex model for simulating the flow patterns which occur when 
a single high-velocity inflow jet is used to stir the fluid within a circular container. The first stage of the model 
consists of conformally mapping the circular perimeter of the container onto a rectangle by means of a 
Schwarz-Christoffel transformation. A potential flow solution is then obtained for the flow inside the 
rectangle and this is transformed to give the potential flow inside the circle. In the second stage of the 
simulation, discrete vortices are added at the inlet of the physical system in order to model the inflow shear 
layers. Velocity components resulting from the discrete vortices and their images in the walls of the cylinder 
are superimposed on the uniform potential flow solution. The positions of the vortices are updated using a 
Lagrangian tracking procedure. Viscous effects are incorporated through the use of random walks. From the 
results it is shown that the discrete vortex method does predict qualitatively the important features of jet- 
forced reservoir flow. 
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INTRODUCTION 

Discrete vortex models offer a powerful computational technique for the simulation of two- 
dimensional viscous flows, particularly in cases where separation or vortex roll-up occurs. 
Helmholtz’ laid the foundation for such models by showing that in ‘an inviscid fluid a vortex tube 
moves with the fluid and its strength remains constant’. Using a small number of discrete vortices, 
Rosenhead2 demonstrated the feasibility of the method for the case of contraflowing streams. 
However, it was only when computers became available that the number of elemental vortices 
could be increased sufficiently to allow adequate simulation of the complex shear layers in wakes 
and jets. Even so, instabilities which arise from the discretization of vorticity tend to disrupt 
vortex motions after some time; consequently, many smoothing techniques are to be found in the 
literature, not all of them leading to desirable results. It is the intention of this introduction to 
summarize briefly the developments that have been made since Rosenhead’s pioneering work. 
For detailed expositions of the discrete vortex method the reader is referred to comprehensive 
review articles by Clements and M a d 3  and Sar~kaya .~  
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Research into the application of discrete vortices began with Rosenhead? who studied the 
surface instability between two streams travelling in opposite directions. He replaced the 
continuous sheet of vorticity between the two layers by 12 elemental vortices per wavelength and 
then used a time-stepping finite difference procedure to calculate the deformation of the vortex 
sheet due to the mutually induced velocities at each vortex position. Although the simulation was 
only continued for four time steps (since the calculation was performed by hand), the results 
clearly showed the vortex sheet rolling up into clusters of vortices. Later, Birkhoff and FisherS 
increased the number of vortices per wavelength to 22 and repeated Rosenhead’s study, but with 
smaller time increments. They found that chaotic motions eventually occurred, caused by the 
singular nature of the self-induced velocity field due to the positions of the vortices; in other 
words, the closer the discrete vortices came together, the greater their propensity to shoot off or 
orbit about each other. 

Early applications of the discrete vortex method to aerodynamics consisted of modelling wing 
tip vortices. For example, Westwater6 used discrete vortex calculations to show that roll-up of the 
trailing vortex sheet began at the wing tips. Takami’ and Moores repeated Westwater’s 
calculations and found that chaotic motions could also occur in this case. Since then, a variety of 
attempts have been made to overcome the instabilities which arise when discrete vortices come 
too close to each other. Kuwahara and Takami’ controlled the irregular roll-up by using 
Rankine-type vortices with expanding cores. Clements and Maull” calmed vortex motions by 
amalgamating vortices on the basis of their velocities. Moore’’ introduced a single tip vortex to 
represent the rolled-up inner region. 

Abernathy and Kronauerl’ modelled the interaction of two free shear layers with discrete 
vortices and simulated the development of a typical von Karmin vortex street; this was the 
precursor to the use of the technique for simulating two-dimensional flows past obstacles. Several 
authors, including Gerrard,’ Sarpkaya,14 Laird,” Chaplin,16 Stansby” and Sarpkaya and 
Schoaff,’8 modelled the flow past a circular cylinder using discrete vortices superimposed on the 
potential flow solution. Varying degrees of complexity for introducing the nascent vortices were 
devised, ranging from a fixed point of introduction (e.g. References 13, 15 and 16) to a variable 
separation point (e.g. References 14, 17 and 18). Flows past square-ended bluff bodies were 
considered by Clementsl’ and Clements and MaullY3 who utilized fixed nascent vortex positions 
since separation would always occur at the sharp corners of the obstacle. Clements” mapped the 
flow region surrounding the square-ended bluff body onto an upper half-plane stretching to 
infinity. He achieved this by use of a conformal Schwartz-Christoffel transformation and then 
corrected the vortex velocities according to Routh’s rule. 

All the early discrete vortex simulations employed pure Lagrangian numerical schemes to 
advect vorticity. Individual velocities of the discrete vortices were determined by summing the 
velocity contributions from all the vortices in the field and superimposing the resultant on the 
potential flow solution. For this reason the technique is often described as the ‘direct summation 
method’. The methodology may also be referred to as a Biot-Savart approach on account of the 
similarity between the magnetic field intensity caused by an electric current and the velocity 
induced by a vortex element. 

The advantage of the Biot-Savart technique is that it is entirely independent of grid-based 
numerical methods, thereby eliminating artificial diffusion usually associated with Eulerian finite 
difference schemes. There are, however, two main difficulties with the method. First, the elemental 
vortices have singularities at their centres of rotation which produce extremely large velocities in 
the immediate vicinity of each vortex. This can cause instabilities in the simulation of the roll-up 
of a vortex sheet. As the vortices in the centre of a cluster move closer to each other, there is a 
tendency for them to orbit around themselves in a chaotic manner rather than to roll-up into the 
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expected spiral. In order to overcome this particular difficulty, various ‘cut-off schemes have 
been devised to desingularize the velocity field at the centres of the vortices; examples include 
Chorin and Bernard’szo vortex ‘blob’ and Chaplin’s16 use of Rankine vortices. The second 
disadvantage with the Biot-Savart approach is that the number of arithmetic operations required 
to update the vortex positions by one time step is approximately proportional to Nz, where N is 
the number of vortices. Thus the computational time required per time step increases dramat- 
ically as further vortices are added. One method which partially overcomes this difficulty is to use 
a computer algorithm to amalgamate vortices if they are closer than a certain distance apart. Not 
only does this help to alleviate the computational costs but it can also remove the propensity of 
vortices to orbit one another. 

The dependence of the Biot-Savart approach upon a work load proportional to Nz implies 
that the technique is unable to cope with large numbers of vortices. Consequently, from the late 
1970s a ‘hybrid‘ Lagrangian-Eulerian discrete vortex method has been increasingly used instead 
of the direct summation approach (e.g. References 21-23). The technique is referred to as the 
vortex-in-cell (VIC) method and employs a Lagrangian method to track the vortex positions and 
an Eulerian grid-based finite difference scheme to solve the elliptic streamfunction equation 
defining the velocity field. Undoubtedly, the main advantage with the vortex-in-cell approach is 
that the cost of the computational technique is linear in N. This allows the method to use a larger 
number of vortices. Furthermore, the bilinear interpolation technique (which is utilized during 
the apportionment of vorticity to the nodes of the computational mesh) effectively removes the 
singularity in the velocity field without having to resort to vortex ‘blobs’ or Rankine vortices. 
However, the drawback with the VIC technique is that the grid independence of the original 
Biot-Savart approach has been abandoned. Furthermore, savings from the removal of the N2 
cost constraint may be completely destroyed if a very fine grid is employed, owing to the 
computationally expensive Poisson solver. As pointed out by Sarpkaya,’ ‘classical’ Biot-Savart 
techniques therefore still have an important role to play in discrete vortex modelling. 

This paper implements a Biot-Savart discrete vortex model for calculating two-dimensional 
jet-forced flow within a flat-bottomed circular reservoir and follows the methodology adopted by 
Borthwick et al.24 Figure 1 illustrates the problem formulation and shows a typical asymmetrical 
circular reservoir with a single inlet and a single outlet. The radial inflow jet produces separation 
at the sharp inlet corner points, and the shear layers which are formed cause two recirculating 

Clrcular Recirculation 
perimeter 
wall \ 

Figure 1. Problem formulation 
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eddies (of opposite senses of rotation) to develop either side of the main throughflow. The flow 
pattern is of interest in that it is representative of conditions encountered in a water supply service 
reservoir. Usually the flow passes directly from inlet to outlet with very little mixing in the 
recirculating zones and consequently there is a tendency for those areas with low velocities to 
stagnate and become ridden with algae. 

Most numerical investigations of radial jet-forced flow within circular tanks and reservoirs 
have been undertaken using finite difference discretizations of either the streamfunction/vorticity 
transport equations or the depth-averaged Reynolds equations (e.g. References 25-29). The 
computational method presented in this paper provides an alternative solution procedure which 
is theoretically free from grid-induced numerical diffusive effects. 

NUMERICAL SCHEME 

Irrotational flow solution 

A two-stage conformal mapping is used to transform the circular flow domain onto a rectangle. 
This allows the potential flow to be determined analytically. Figure 2 shows the physical domain 
R located at the origin of the complex z-plane, z = x + iy, where i = ,/( - 1). The flow problem is 
non-dimensionalized and therefore the reservoir is represented by a unit circle. Points a, b, e and d 
on the perimeter of the cylinder define the inlet and outlet corners. 

During the first stage of the mapping procedure (illustrated in Figure 2) the circular reservoir is 
transformed onto the upper half of the s-plane (s = p  + iq) using the function 

s=-1 - , 
* (;.rt) 

which may be rewritten in terms of the co-ordinates x and y as 

s =  -1  

t - plane  

z(x.y) = x+iy 

8 - plane 

s(p.q) = p+iq 

tY tq 

b' a' P 
f'-*oD 

Figure 2. Conformal mapping, step 1: z-plane to s-plane 
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On the perimeter of the circle x2 + y 2  = 1 and therefore 

Thus on the circumference of the reservoir 

(4) 
X 

p =  -~ and q=O, 
l + Y  

and consequently the perimeter wall is mapped onto the q = 0 axis. The points a', b', c' and d' in 
Figure 2 represent the images of the corner locations after the transformation. 

The second stage of the conformal mapping employs a Schwarz-Christoffel transformation to 
convert the upper half of the s-plane into a rectangular region in the [-co-ordinate frame 
([= q + it). Figure 3 illustrates the mapping and shows the inlet and outlet openings a"&' and 
d'd'' forming opposite sides of the rectangular region R". The Schwarz-Christoffel transformation 
is defined by 

d i ~ ~ ( S ~ ~ l ) . l / n - l ( s ~ p 2 ) . 2 / n - l  ds t .  . (s - p,)""'" - 1, (5 )  

where A is an arbitrary constant, a,, a2, . . . , a, are the interior angles of the region in the [-plane, 
p , ,  p 2 ,  . . . , p ,  are the p-values of the corner nodes and n is the total number of vertices. In this 
particular case n = 4 and a1 = a2 = a j  = a4 = n/2. Assuming A to be unity allows the transformation 
to be simplified to 

1 
J [ ( s  - u') (s - b') (S -c') ( S  - d ' ) ]  ' 

d l  - -_ 
ds 

The next stage of the numerical scheme involves generating a uniform potential flow within the 
rectangular region R". This is achieved by equating the q- and 5-co-ordinates to the velocity 

8 - plane f - plane 

tq 

Figure 3. Conformal mapping, step 2 s-plane to [-plane 
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potential <D and the streamfunction $ respectively. Thus the complex potential m = @+ ii) is equal 
to 5. 

The complex velocity v is defined as 

where u and u are the velocity components in the x- and y-directions respectively. Using the chain 
rule, the complex velocity may be expressed as 

am dmaZ 
ax dz a x *  v=-=-- 

However, az/ax= 1 and, since the complex potential is equal to c, 
dw dc 
dz dz’ 

v=-=- (9) 

The potential flow solution in the physical z-plane can therefore be determined by using the chain 
rule to expand dLJdz, i.e. 

dc drds  
dz dsdz’ 

v=-=-- 

Differentiating equation (1) with respect to z yields 

ds 2 

Hence the complex velocity at any point in the circular reservoir may be found by substituting 
equations (11) and (6) into (10) to give 

The complex velocity presented in the above expression must be scaled so that the average 
velocity across the inlet of the physical domain is unity. This is achieved by dividing equation (12) 
by the unscaled discharge Q and multiplying by the inlet width L. The unscaled discharge through 
the reservoir is given by the difference in streamfunction values between the two inlet comer 
points at uN and b“. Since u“ and b” lie on the same equipotential line, 

The limits of this integral lie on the real axis of the s-plane and so the integrand can be expressed 
entirely in terms of p. After rearrangement the unscaled discharge becomes 

The above equation is an incomplete elliptic integral of the first kind and may be rewritten 
according to Byrd and Friedman30 as 

Q = r), (15) 
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where 
2 

t =  J [(a’- c’) (W- d’ ) ]  ’ 
(a‘-c’)(p-b’) x 

for p=a’, 
(a’ - b’) (p - d )  )I=- 2 

>- .=J( (a‘ - c’) (b’ - d’)  

A = sin- 1 [/( 
(a’ - b’) (c’ - d’)  

F is a complete elliptic integral of the first kind and may be evaluated as a series approximation: 

Thus the scaled uniform complex velocity V, for the irrotational flow solution is given by 

. L  1 2 
2$ = us- IU, =- Q , / [ (s-a’)(s-b’)(s-cr)(s-d’)3 (z +i)’ ’ 

where us and us are the scaled velocity components in the x- and y-directions respectively. 

Discrete vortex simulation 

The shear layers formed between the inflow jet and the inlet boundary are modelled by adding 
discrete vortices to the irrotational flow solution of equation (17). If the simulation employs 
potential vortices, the complex velocity due to the superposition of the scaled uniform irrotational 
flow and the vortices is given by 

i N r j  i N  rj 
u-iu=vs-- C -+- C -, 

2n j=1 2 - Z j  2R j=1 z-l/i;. 

where rj is the circulation of the jth vortex (positive for anticlockwise rotation), zj is the position 
of thejth vortex, N is the total number of vortices in the flow field and the overbar denotes a 
complex conjugate. The velocity field due to the vortices is calculated as two separate sum- 
mations: the first is the velocity contribution from the actual vortices, whilst the second arises 
from the fact that each vortex must have an image of opposite circulation at the ‘inverse’ position 
outside the reservoir. These vortex images ensure that the cylinder surface remains a streamline.” 

The singularity at the centre of a potential vortex may induce excessive velacities when two 
vortices approach each other; following Chaplin,16 this difficulty is overcome through the use of 
Rankine vortices. Thus the complex velocity at the point z = x + iy becomes 

where r, is the radius of the vortex core. The first summation is utilized for vortices whose cores 
do not cover the point z, whilst the third summation is taken over the remaining vortices. Rankine 
velocity profiles are also used for the vortex images. Therefore the second summation is employed 
whenever the core of an image vortex does not enclose the point z, whereas the fourth summation 
is used if z lies within the image core. 
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Introduction of nascent vortices 

The strengths of the vortices used to simulate the shear layers of the inflow jet are found from a 
consideration of the vorticity flux across the inlet boundary layers. Figure 4 illustrates the 
assumed velocity profile across the inflow and defines a co-ordinate system with x’ and y’ 
measured parallel and perpendicular to the lower inlet wall. The vorticity flux across the 
boundary layer is given approximately by Raudkivi and Callander3’ as 

where u‘ is the velocity component in the x’-direction, w is the vorticity, 6 is the nominal thickness 
of the boundary layer and U is the free stream velocity. In the discrete vortex model the vorticity 
flux across the boundary layer is equivalent to the circulation of an individual discrete vortex, rj, 
divided by the time increment Atv between the introduction of nascent vortices. Since the inflow 
velocity has been non-dimensionalised (U = l), the strength of vortices originating from the lower 
boundary layer can thus be expressed as 

where the circulation rj is positive for anticlockwise rotation. The vortices introduced at the 
upper boundary separation point are calculated in a similar manner: 

rj=- AtV 
2 ’  

Vortex tracking 

As explained in the Introduction, the computer time necessary to update the vortex positions in 
a Biot-Savart approach is approximately proportional to N 2 ,  where N is the number of vortices. 
This is because the velocity of an individual vortex is found by summing the velocity contrib- 
utions from each of the remaining N- 1 vortices. In order to avoid using excessive computer 

X’ 

Figure 4. Assumed two-dimensional velocity profile at inlet (after Borthwick et a[?‘) 
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resources, the time increment Atv between the addition of nascent vortices must be carefully 
chosen. Numerical experimentation has revealed that a suitable value of At, from the viewpoint of 
computer CPU time is generally too large for the finite difference vortex-tracking discretization; 
vortices near the circular perimeter of the reservoir are frequently transported across the 
boundary wall. Consequently, a smaller time step At,,, is employed to update the vorticity field. 
For convenience, At, is chosen to be a multiple of At, so that the addition of new vortices at the 
inlet will coincide with time increments employed in the Lagrangian tracking procedure. 

The vortex positions are advanced over the ‘vortex movement’ time step At, using a first- 
order-accurate finite difference scheme: 

xj ( t+At , )=xj ( t )+ui ( t )At , ,  yj(t +At , )=y j ( t )+  uj(t)At,, (23) 
where uj and vj  are the velocity components of the jth vortex (determined from either equation 
(18) or (19)). In the event of a vortex being advected across a solid perimeter wall, it is ‘reflected’ 
back into the flow domain. Vortices which leave through the outlet of the reservoir are removed 
from subsequent flow calculations. 

Random walk 

The vortex-tracking scheme presented above models only the advective processes of the 
discretized vorticity field. C h ~ r i n ~ ~  proposed that the viscous effects could be simulated by 
treating the diffusive and advective phenomena in separate numerical procedures. This is 
equivalent to replacing the exact vorticity transport equation (simultaneous advection and 
diffusion of vorticity) 

DU am 
Dt  at 
-=- + u - vo = v v 2 0  

by two sequential equations, 

a 0  
at 
- + u vo = 0 

and 

ao 
- = v v 2 0 ,  
at 

where u represents the velocity vector. 
A stochastic technique is used to model the pure diffusion of equation (25b); at the end of the 

advective tracking stage, each vortex undergoes a random walk in two orthogonal directions. The 
standard deviation of these random walks must be compatible with the analytical solution of the 
diffusion equation and therefore the fluctuating random velocity components of a vortex are 
generated asJ3 

where v is the eddy viscosity and rl and r2 are independent normally distributed random numbers 
each with zero mean and standard deviation of unity. For convenience the computer model is 
based upon the length of the random walks. Hence equations (26) are recast as 

Ax, = #,At, =rl (2vAt,)’12, A y , = ~ , A t , = r ~ ( 2 v A t , ) ~ / ~ ,  (27) 
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where Axr and Ayr are the random walk distances in the x- and y-directions respectively. Once the 
vortices have been advanced by random walks, the boundary of the reservoir is preserved as a 
circle by implicit repositioning of the image vortices according to the Milne-Thomson the~rem.~’ 
Any tendency for vortices to cross the boundary because of a high value of mutually induced 
velocity from a nearby vortex was minimized by appropriate reduction in the time step At,,,. As 
mentioned previously, any vortex which did cross the boundary was given an additional 
compensatory radial displacement to reflect it back into the reservoir. 

OPTIMIZATION OF EMPIRICAL FLOW PARAMETERS 

The previous section has described a Biot-Savart discrete vortex model for simulating two- 
dimensional jet-forced flows in flat-bottomed circular reservoirs. Although the governing equa- 
tions originate from well-defined physical principles, the computer model requires the user to 
select appropriate values for a number of important parameters. The success of the simulation 
depends crucially upon three variables: the exact position of introduction of the nascent vortices, 
the time increment Atv between successive additions of new vortices and the time step Atm used in 
the Lagrangian tracking procedure. Furthermore, the ‘smoothness’ of the velocity vector dia- 
grams depicting the reservoir flow is influenced by the use of either Rankine or potential vortices. 
Selection of the various empirical parameters is accomplished by conducting extensive numerical 
trials. 

Borthwick et u Z . ~ ~  have previously outlined the method employed to select the positions of 
vortex introduction. Figure 5 depicts the velocity profile across the inlet of the reservoir as 
determined by the numerical model and shows that the most obvious defect in the potential flow 
solution is the complete absence of a boundary layer. Instead, potential flow theory predicts a 
velocity profile which tends asymptotically to infinity either side of the inlet. Consequently, the 
transport of nascent vortices into the interior of the cylinder is dominated by the high velocities at 
the edges of the jet. The closer new vortices are introduced to the inlet corners, the more rapidly 
they enter the reservoir. This forces the numerical scheme to adopt a smaller time step in the 
Lagrangian tracking procedure and so increases the computational costs of the simulation. In the 
present study the vortex introduction positions are located one-hundredth of the distance across 
the inlet. 

Magnitude of 
velocity, u’ 

0 0.6 1.0 1.5 2.0 

Figure 5. Computed velocity profile at inlet 
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The time interval At, between successive additions of new vortices at the inlet separation points 
is the primary factor which governs the overall run time of the model. In order that the simulation 
can employ a large number of vortices, At, is chosen to be as small as possible whilst maintaining 
a sensible overall run time. The numerical experiments to discover the optimum value for Ar, 
were coupled with those used to find a suitable ‘vortex movement’ time increment At,,,. If large 
values of At, are employed, vortices approaching the outlet often attempt to cross the solid 
perimeter wall; this demonstrates that vortices are not being tracked along the correct streamlines 
and indicates that a reduction in At, is necessary. After many trial runs the non-dimensional time 
increments Arv and At,,, were chosen to be 0.1 and 0.002 respectively. These values produced 
acceptable flow simulations and allowed the computer model to be advanced to the non- 
dimensional time level of t=10.0 in approximately 240min of CPU time on a PRlME 9955 
computer. 

The selection of the size of core for the Rankine vortices is a more arbitrary decision. Chaplin16 
studied the flow past a circular cylinder of unit diameter and chose to use Rankine vortices having 
a core radius ro equal to 0-1. In the present numerical study the discrete vortex method is applied 
to the confined flow within a circular cylinder. Since the inlet width of the reservoir in the Results 
section is equal to n/16(=0.196), it was judged that the core radius should be smaller than that 
employed by Chaplin. Trial and error eventually led to the adoption of a core radius ro equal to 
0.05. This proved large enough to remove the excessive velocities close to the vortex centres whilst 
enabling the vortex positions at the early time stages of the calculation to resemble a potential 
vortex simulation. 

RESULTS 

Borthwick er ~ 1 . ~ ~  have already presented results from a Biot-Savart discrete vortex model for 
simulating flows in circular tanks and reservoirs. They considered two separate geometries: the 
first case consisted of an inlet n/2 radians anticlockwise from the outlet, whereas the second 
geometry represented a reservoir having an inlet diametrically opposite the outflow opening. The 
computer model described herein extends Borthwick et d.’s investigation to include Rankine 
vortices and a random walk mechanism (to simulate diffusive processes). Test cases correspond- 
ing to the geometries studied by Borthwick er al. were considered initially in order to validate the 
numerical algorithms used in the computer code. However, for presentational purposes the results 
utilize the asymmetrical circular reservoir geometry investigated by Mills26 and Borthwick and 
Barber.29 The inlet and outlet openings subtend an angle of x/16 radians and their centrelines are 
separated by 7z/8. Details of the reservoir geometry are given in Table I together with a summary 
of the values of the semi-empirical flow parameters discussed earlier. 

Table I. Reservoir geometry and empirical flow parameters 

Inlet co-ordinates 
Outlet co-ordinates 
Position of vortex introduction 
Strength of vortices f 0-05 
Time increment between vortex movement, At,,, 
Time increment between addition of nascent 

Rankine vortex core size, ro 

(-0.9952, -0.0980) and (-0-9952,0.0980) 
(0.8819, 0.4714) and (0.9569, 0.2903) 
(-0.9952, -0.0961) and (-0.9952, 0.0961) 

0-002 
010 

0.05 
vortices, Atv 
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t - 2.5 t - 5 . 0  

t - 7 . 5  t - 3 0 . 0  

Figure 7. Vortex positions: potential vortex simulation 
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Figure 6 illustrates the irrotational flow solution determined from the analytical expression 
given in equation (17); the velocity vectors are scaled so that a length equal to the radius of the 
cylinder corresponds to a magnitude of 5.0. As a check the irrotational flow solution was also 
determined numerically from a finite difference discretization of Laplace's equation. The analyt- 
ical and numerical solutions were identical, confirming the validity of the two-stage conformal 
mapping procedure. 

Figures 7 and 8 depict the sequence of vortex positions and velocity distributions obtained 
from a 'pure advection' potential vortex simulation, i.e. without the random walk mechanism. (It 
should be noted that the velocity vectors in Figures 8 , l O  and 12 are scaled so that an arrow length 
equal to the radius of the reservoir corresponds to a magnitude of 10.0.) During the early stages of 
the calculation vortices enter the reservoir in a symmetrical manner and roll up into two distinct 
eddies of opposite senses of rotation. By t = 5-0 part of the eddy formed by the upper shear layer 
begins to exit the reservoir. The removal of vortices with positive circulation causes the net 

. . . . . . . . . . . . . .  

---a//--.,.- . . . . . . .  
. . . ,  / , - \ \ \ \ . " '  . . . .  

. . . , , - r ,  t l  . . . . . . . .  \ / :  . .  \ . _ _ , . . . . .  :) . . . . .  

. . . .  
. .  

---/--//---,//---.\ -... . . . . . . . ,  / /  . - \ \ \  
. . . . .  . , I I & . I l l  

. . . . .  \..-c,, 
. . . . . . . .  - 0 ,  

. . . . . . . . . .  

t - 2.5 t - 5 .0  

/-\ . . . . . . .  

. . . . . .  - . 

t - 1 . 5  

. . . . . . . . . .  

t - 10.0 

Figure 8. Velocity distributions: potential vortex simulation 
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vorticity in the reservoir to become negative and accounts for the dominance of the clockwise- 
rotating lower gyre structure (Figure 8). Between t = 5.0 and 10.0 the inflow jet realigns itself so 
that most of the throughflow passes directly between inlet and outlet. In the later stages of the 
simulation the jet begins to waver as the discrete vortices modelling the shear layers either side 
of the throughflow assemble into distinct clusters. The strength of the lower eddy increases 
throughout the calculation as vortices.of clockwise rotation are recirculated in the lower gyre. By 
t = 10.0 the main region of recirculation has moved back towards the inlet and starts to affect the 
direction of the inflow jet. Continuation of the simulation beyond t = 10.0 results in chaotic 
unrealistic motions which overwhelm the numerical scheme; velocities in the lower eddy increase 
to unrealistically high values, whilst the upper eddy practically disappears. 

Figures 9 and 10 illustrate the results from a simulation employing Rankine vortices with a 
core radius ro equal to 005. As for the previous case the computer model tracks the vortices using 

t - 2 . 5  t - 5.0 

t - 7 . 5  t - 10.0 

Figure 9. Vortex positions: Rankine vortex simulation (r,, = 0 5 )  
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/-\ . . . . . . . . . . . . . .  
. . . . . . .  ~ . . _ _ .  

t - 2 . 5  t - 5 . 0  

t - 7 .5  t - 10.0 

Figure 10. Velocity distributions: Rankhe vortex simulation (r,=OaS) 

a pure advective Lagrangian scheme. It can be seen that the vortex positions during the early 
stages of the flow are almost identical to the potential vortex positions shown in Figure 7. This 
indicates that the Rankine velocity profiles do not radically alter the discretization of the vorticity 
field. Figure 10 illustrates the smoothing effect of the Rankine cores by demonstrating that the 
velocity vectors depicting the flow are much less susceptible to ‘distortion’ in the vicinity of the 
vortex centres. Moreover, the use of Rankine velocity profiles reduces the tendency for vortices to 
be advected across the solid perimeter walls of the flow domain. This can be attributed to the 
elimination of the large mutually induced velocities which are created when two potential vortices 
move close to each other. The Rankine vortex model predicts a slightly weaker recirculation zone 
in the lower portion of the reservoir. However, considering the large core size in relation to the 
dimensions of the reservoir, the potential and Rankine vortex simulations depicted in Figures 
7-10 are remarkably consistent. 
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The final set of results utilizes Rankine vortices (T, = 005) in conjunction with the random walk 
technique. Figures 11 and 12 show the development of recirculation for an inlet Reynolds number 
(based upon the horizontal eddy viscosity coefficient) of 100. The inlet Reynolds number is 
defined in an identical manner to that of Mills,26 i.e. 

where UI is the mean inlet velocity, E is half the angle subtended by the inlet, Ro is the radius of the 
reservoir and v is the horizontal eddy viscosity coefficient. 

Figure 11 illustrates that the random walk algorithm has a dramatic effect on vortex positions; 
the symmetrical entry of vortices into the reservoir is completely destroyed and the characteristic 
roll-up of vortices into two distinct eddies is less well defined. Diffusion of the shear layer 
manifests itself as a transverse spreading of the vortex positions. Although the individual vortices 

t - 2.5 t - 5 . 0  

t - 7 . 5  t - 10.0 

Figure 11. Vortex positions: Rankine vortex simulation with random walk (r,,=O.O5, Re,= 100.0) 
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Figure 12. Velocity distributions: Rankine vortex simulation with random walk (r,,=DOS, Re,= 1000) 

behave chaotically, the velocity vector plots (Figure 12) are notable for their smooth variation in 
time. In fact, the random walk mechanism improves the simulation by reducing the circulation of 
the lower gyre whilst increasing the strength of the upper recirculation zone. Apart from the 
wavering motion of the main throughflow, the velocity vectors at t =  10.0 are judged to be in 
qualitative agreement with the experimental flow visualization illustrated in Figure 13. Beyond 
t = 10.0 the inflow jet in the numerical scheme becomes increasingly distorted by the growth of the 
lower gyre. This leads to a totally unrealistic reservoir circulation pattern as the throughflow is 
forced towards the upper boundary of the reservoir. 

CONCLUSIONS 

This paper has described a discrete vortex model for qualitatively assessing jet-forced circulation 
patterns in circular tanks and reservoirs. First a two-stage conformal mapping is employed to 
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Figure 13. Flow visualization of recirculating eddies in a circular reservoir using potassium permangamte solution 
(reservoir diameter 1.5 m, Row depth 120 mm, inflow velocity 0.1 ms-’) 

transform the circular flow domain onto a rectangle; this enables the irrotational flow within the 
circular reservoir to be determined via an exact analytical technique. In the second stage of the 
model discrete vortices are superimposed on the irrotational flow solution in order to model the 
shear layers which are formed either side of the inflow jet. The velocities of the individual 
vortices are calculated using the ‘direct summation’ (Biot-Savart) method and consequently the 
computer time required to update the vorticity field increases rapidly as new vortices are added at 
the inlet. By restricting the maximum number of vortices to approximately 200, it was found that 
just under 4 h of CPU time were required on a PRlME 9955 computer to run the flow simulation 
to the non-dimensionalized time t =  10.0. T.he use of only 200 vortices meant that the discretiz- 
ation of the vorticity field was rather coarse. Nevertheless, the results demonstrate that the model 
is capable of qualitatively predicting the recirculatory features of momentum-driven reservoir 
flow. 

The most satisfactory flow predictions are obtained when the Lagrangian vortex-tracking 
algorithm implements a stochastic diffusion model; the random walk mechanism effectively calms 
the velocity field and reduces the distortions of the throughflow jet. However, in a similar manner 
to other discrete vortex simulations4 the present numerical scheme fails to reach steady state or 
limit cycle conditions, but instead produces an increasingly chaotic flow solution. For this 
particular model the onset of the chaotic motion is characterized by unrealistically high velocities 
in the lower recirculation zone. The growth in circulation of the lower eddy may be partially 
attributed to the fact that the numerical scheme does not account for the generation of vorticity 
within the boundary layers of the circular perimeter walls. Consequently, it is recommended that 
future investigations should study the possibilities of adding na&nt vortices along the circular 
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walls of the flow domain as well as at the inlet separation points. This should be implemented as 
part of a vortex-in-cell model in order to cope with the increased number of elemental vortices. 
Moreover, the use of transformation techniques, such as proposed by B a ~ f i e l d ~ ~  or Thompson et 
a1.,35 -37 is recommended to enable discrete vortex simulations of flow patterns in irregularly 
shaped reservoirs. 
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